p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.4Q8, C24.9C22, C23.82C23, (C2×C4).19D4, C2.4(C4⋊1D4), C22.75(C2×D4), C22.24(C2×Q8), C2.10(C22⋊Q8), C2.C42⋊12C2, C22.42(C4○D4), (C22×C4).11C22, C2.9(C22.D4), (C2×C4⋊C4)⋊8C2, (C2×C22⋊C4).10C2, SmallGroup(64,80)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.4Q8
G = < a,b,c,d,e | a2=b2=c2=d4=1, e2=bd2, eae-1=ab=ba, dad-1=ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd-1 >
Subgroups: 165 in 93 conjugacy classes, 39 normal (7 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C24, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C23.4Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C22⋊Q8, C22.D4, C4⋊1D4, C23.4Q8
Character table of C23.4Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ16 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
(2 20)(4 18)(5 29)(6 16)(7 31)(8 14)(9 32)(10 15)(11 30)(12 13)(22 26)(24 28)
(1 23)(2 24)(3 21)(4 22)(5 15)(6 16)(7 13)(8 14)(9 32)(10 29)(11 30)(12 31)(17 25)(18 26)(19 27)(20 28)
(1 19)(2 20)(3 17)(4 18)(5 10)(6 11)(7 12)(8 9)(13 31)(14 32)(15 29)(16 30)(21 25)(22 26)(23 27)(24 28)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 32 21 11)(2 12 22 29)(3 30 23 9)(4 10 24 31)(5 28 13 18)(6 19 14 25)(7 26 15 20)(8 17 16 27)
G:=sub<Sym(32)| (2,20)(4,18)(5,29)(6,16)(7,31)(8,14)(9,32)(10,15)(11,30)(12,13)(22,26)(24,28), (1,23)(2,24)(3,21)(4,22)(5,15)(6,16)(7,13)(8,14)(9,32)(10,29)(11,30)(12,31)(17,25)(18,26)(19,27)(20,28), (1,19)(2,20)(3,17)(4,18)(5,10)(6,11)(7,12)(8,9)(13,31)(14,32)(15,29)(16,30)(21,25)(22,26)(23,27)(24,28), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,32,21,11)(2,12,22,29)(3,30,23,9)(4,10,24,31)(5,28,13,18)(6,19,14,25)(7,26,15,20)(8,17,16,27)>;
G:=Group( (2,20)(4,18)(5,29)(6,16)(7,31)(8,14)(9,32)(10,15)(11,30)(12,13)(22,26)(24,28), (1,23)(2,24)(3,21)(4,22)(5,15)(6,16)(7,13)(8,14)(9,32)(10,29)(11,30)(12,31)(17,25)(18,26)(19,27)(20,28), (1,19)(2,20)(3,17)(4,18)(5,10)(6,11)(7,12)(8,9)(13,31)(14,32)(15,29)(16,30)(21,25)(22,26)(23,27)(24,28), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,32,21,11)(2,12,22,29)(3,30,23,9)(4,10,24,31)(5,28,13,18)(6,19,14,25)(7,26,15,20)(8,17,16,27) );
G=PermutationGroup([[(2,20),(4,18),(5,29),(6,16),(7,31),(8,14),(9,32),(10,15),(11,30),(12,13),(22,26),(24,28)], [(1,23),(2,24),(3,21),(4,22),(5,15),(6,16),(7,13),(8,14),(9,32),(10,29),(11,30),(12,31),(17,25),(18,26),(19,27),(20,28)], [(1,19),(2,20),(3,17),(4,18),(5,10),(6,11),(7,12),(8,9),(13,31),(14,32),(15,29),(16,30),(21,25),(22,26),(23,27),(24,28)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,32,21,11),(2,12,22,29),(3,30,23,9),(4,10,24,31),(5,28,13,18),(6,19,14,25),(7,26,15,20),(8,17,16,27)]])
C23.4Q8 is a maximal subgroup of
C23.295C24 C42.162D4 C23.318C24 C23.323C24 C24⋊4Q8 C24.268C23 C24.269C23 C23.348C24 C23.349C24 C23.354C24 C24.276C23 C23.367C24 C24.290C23 C23.379C24 C23.382C24 C24.300C23 C23.398C24 C23.401C24 C23.416C24 C23.417C24 C23.419C24 C24.311C23 C23.422C24 C23.439C24 C24.326C23 C23.456C24 C24.583C23 C24.339C23 C42.178D4 C24.346C23 C23.496C24 C42⋊22D4 C42.184D4 C24.355C23 C42.185D4 C24.589C23 C23.524C24 C24⋊5Q8 C42.187D4 C42.189D4 C42.190D4 C23.535C24 C42⋊30D4 C24.375C23 C23.551C24 C23.554C24 C23.556C24 C24.378C23 C42.198D4 C23.567C24 C23.568C24 C23.571C24 C23.572C24 C23.574C24 C24.385C23 C23.585C24 C23.592C24 C24.401C23 C23.605C24 C23.606C24 C24.412C23 C23.611C24 C23.618C24 C23.620C24 C23.621C24 C24.418C23 C23.627C24 C23.630C24 C23.632C24 C23.635C24 C24.426C23 C23.640C24 C23.641C24 C24.428C23 C23.643C24 C24.432C23 C24.434C23 C23.652C24 C23.654C24 C23.668C24 C23.671C24 C23.673C24 C23.677C24 C24.448C23 C23.696C24 C23.698C24 C23.701C24 C23.707C24 C24.459C23 C23.716C24 C42.199D4 C42.200D4 C23.726C24 C23.727C24 C23.729C24 C23.734C24 C23.736C24 C23.737C24 C23.738C24 C23.741C24 C24.15Q8 C24.3A4
C24.D2p: C24.4D4 C24.16D4 C24.17D4 C24.18D4 C24.18D6 C24.7D10 C24.7D14 ...
C2p.(C4⋊1D4): C42⋊16D4 C42⋊19D4 C42.167D4 C42.196D4 (C2×C12).33D4 (C2×C12).290D4 (C2×C20).33D4 (C2×C20).289D4 ...
C23.4Q8 is a maximal quotient of
C24.5Q8 C24.634C23 C24.635C23
(C2×C4p).D4: C24.11Q8 (C2×C8).168D4 (C2×C4).27D8 (C2×C8).169D4 (C2×C8).60D4 (C2×C8).170D4 (C2×C8).171D4 C42.10D4 ...
Matrix representation of C23.4Q8 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 2 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 2 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 3 | 0 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,2,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,3,1,0,0,0,0,2,2,0,0,0,0,0,0,0,3,0,0,0,0,2,0] >;
C23.4Q8 in GAP, Magma, Sage, TeX
C_2^3._4Q_8
% in TeX
G:=Group("C2^3.4Q8");
// GroupNames label
G:=SmallGroup(64,80);
// by ID
G=gap.SmallGroup(64,80);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,2,48,121,151,362,332]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=1,e^2=b*d^2,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations
Export